
1 Cyclic codes 

Check polynomials and parity check matrices for cyclic codes 

Let C be a cyclic [n,k]-code with the generator polynomial g(x) (of degree n - k). By 

the last theorem g(x) is a factor of xn - 1. Hence 

xn - 1 = g(x)h(x) 
 

for some h(x) of degree k (where h(x) is called the check polynomial of C).  
 

Theorem Let C be a cyclic code in Rn with a generator polynomial g(x) and a check 

polynomial h(x). Then an c(x)  Rn is a codeword of C if c(x)h(x)  0 - this and next 

congruences are modulo xn - 1.  

Proof Note, that g(x)h(x) = xn  - 1  0 

(i) c(x)  C  c(x) = a(x)g(x) for some a(x)  Rn 

 c(x)h(x) = a(x) g(x)h(x)  0. 

      0 

(ii) c(x)h(x)  0 

c(x) = q(x)g(x) + r(x), deg r(x) < n – k = deg g(x) 

c(x)h(x)  0  r(x)h(x)  0 (mod xn  - 1) 
 

Since deg (r(x)h(x)) < n – k + k = n, we have r(x)h(x) = 0 in F[x] and therefore 

r(x) = 0  c(x) = q(x)g(x)  C. 



2 Cyclic codes 

POLYNOMIAL REPRESENTATION of DUAL CODES 

Since dim (h(x)) = n - k = dim (C^) we might easily be fooled to think that the 

check polynomial h(x) of the code C generates the dual code C^. 

Reality is “slightly different'': 
 

Theorem Suppose C is a cyclic [n,k]-code with the check polynomial 

h(x) = h0 + h1x + … + hkx
k, 

then 

(i) a parity-check matrix for C is 

 

 

 

 

 

(ii) C^ is the cyclic code generated by the polynomial 

 

 

i.e. the reciprocal polynomial of h(x). 
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3 Cyclic codes 

POLYNOMIAL REPRESENTATION of DUAL CODES 

Proof A polynomial c(x) = c0 + c1x + … + cn -1x
n –1 represents a code from C if   

c(x)h(x) = 0. For c(x)h(x) to be 0 the coefficients at xk,…, xn -1 must be zero, i.e. 

 

 

 

 

Therefore, any codeword c0 c1… cn -1  C is orthogonal to the word hk hk -1…h000…0 

and to its cyclic shifts. 

Rows of the matrix H are therefore in C^. Moreover, since hk = 1, these row-vectors 

are linearly independent. Their number is n - k = dim (C^). Hence H is a generator 

matrix for C^, i.e. a parity-check matrix for C. 

In order to show that C^ is a cyclic code generated by the polynomial 

 

it is sufficient to show that        is a factor of xn -1. 

Observe that                       and since   h(x -1)g(x -1) = (x -1)n -1 

we have that   xkh(x -1)xn -kg(x -1) = xn(x –n -1) = 1 – xn 

and therefore        is indeed a factor of xn -1. 
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4 Cyclic codes 

ENCODING with CYCLIC CODES  I 

Encoding using a cyclic code can be done by a multiplication of two polynomials - a 

message polynomial and the generating polynomial for the cyclic code. 
 

Let C be an (n,k)-code over an field F with the generator polynomial  

g(x) = g0 +     g1 x + … + gr –1 x r -1 of degree r = n - k. 
 

If a message vector m is represented by a polynomial m(x) of degree k and m is 

encoded by 

m  c = mG1, 
 

then the following relation between m(x) and c(x) holds 

c(x) = m(x)g(x). 
 

Such an encoding can be realized by the shift register shown in Figure below, 

where input is the k-bit message to be encoded followed by n - k 0' and the output 

will be the encoded message. 

 

 

Shift-register encodings of cyclic codes. Small circles represent multiplication by 

the corresponding constant,  nodes represent modular addition, squares are 

delay elements 



5 Cyclic codes 

ENCODING of CYCLIC CODES  II 

Another method for encoding of cyclic codes is based on the following (so called 
systematic) representation of the generator and parity-check matrices for cyclic 
codes. 
 

Theorem Let C be an (n,k)-code with generator polynomial g(x) and r = n - k. For    
i = 0,1,…,k - 1, let G2,i be the length n vector whose polynomial is G2,i(x) = x r+I -x r+I 
mod g(x). Then the k * n matrix G2 with row vectors G2,I is a generator matrix for C. 
 

Moreover, if H2,J is the length n vector corresponding to polynomial H2,J(x) = xj mod 
g(x), then the r * n matrix H2 with row vectors H2,J is a parity check matrix for C. If 
the message vector m is encoded by 

m  c = mG2, 
 

then the relation between corresponding polynomials is 

c(x) = xrm(x) - [xrm(x)] mod g(x). 
 

On this basis one can construct the following shift-register encoder for the case of 
a systematic representation of the generator for a cyclic code: 

 

 

Shift-register encoder for  systematic representation of cyclic codes. Switch A is 
closed for first k ticks and closed for last r ticks; switch B is down for first k ticks and 
up for last r ticks. 



6 Cyclic codes 

Hamming  codes  as  cyclic  codes 

Definition (Again!) Let r be a positive integer and let H be an r * (2r -1) 

matrix whose columns are distinct non-zero vectors of V(r,2). Then the 

code having H as its parity-check matrix is called binary Hamming 

code denoted by Ham (r,2). 
 

It can be shown that binary Hamming codes are equivalent to cyclic 

codes. 

Theorem The binary Hamming code Ham (r,2) is equivalent to a cyclic 

code.  

Definition If p(x) is an irreducible polynomial of degree r such that x is a 

primitive element of the field F[x] / p(x), then p(x) is called a primitive 

polynomial. 

Theorem If p(x) is a primitive polynomial over GF(2) of degree r, then 

the cyclic code p(x) is the code Ham (r,2).  



7 Cyclic codes 

Hamming  codes  as  cyclic  codes 

Example Polynomial x3 + x + 1 is irreducible over GF(2) and x is 

primitive element of the field F2[x] / (x3 + x + 1).  
 

F2[x] / (x3 + x + 1) = 
 

{0, x, x2, x3 = x + 1, x4 = x2 + x, x5 = x2 + x + 1, x6 = x2 + 1} 
 

The parity-check matrix for a cyclic version of Ham (3,2) 
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8 Cyclic codes 

PROOF  of  THEOREM 

The binary Hamming code Ham (r,2) is equivalent to a cyclic code. 

It is known from algebra that if p(x) is an irreducible polynomial of degree r, then 
the ring F2[x] / p(x) is a field of order 2r. 

In addition, every finite field has a primitive element. Therefore, there exists an 
element a of F2[x] / p(x) such that 

F2[x] / p(x) = {0, 1, a, a2,…, a2r –2}. 
 

Let us identify an element a0 + a1 + … ar -1x
r -1 of F2[x] / p(x) with the column vector 

(a0, a1,…, ar -1)
T 

 

and consider the binary r * (2r -1) matrix 

H = [ 1  a  a2  … a2^r –2 ]. 
 

Let now C be the binary linear code having H as a parity check matrix. 

Since the columns of H are all distinct non-zero vectors of V(r,2), C = Ham (r,2). 

Putting n = 2r -1 we get 

  C = {f0 f1 … fn -1  V(n, 2) | f0 + f1 a + … + fn -1 a
n –1  = 0        (2) 

      = {f(x)  Rn | f(a) = 0 in F2[x] / p(x)}             (3) 
 

If f(x)  C and r(x)  Rn, then r(x)f(x)  C because 

r(a)f(a) = r(a)  0 = 0 
 

and therefore, by one of the previous theorems, this version of Ham (r,2) is cyclic. 



9 Cyclic codes 

BCH  codes  and  Reed-Solomon  codes 

To the most important cyclic codes for applications belong BCH codes and Reed-
Solomon codes. 
 

Definition A polynomial p is said to be minimal for a complex number x in Zq if p(x) 
= 0 and p is irreducible over Zq. 

Definition A cyclic code of codewords of length n over Zq, q = pr, p is a prime, is 
called BCH code1 of distance d if its generator g(x) is the least common multiple of 
the minimal polynomials for 

 w l, w l +1,…, w l +d –2 
 

 for some l, where 

w is the primitive n-th root of unity. 
 

If n = qm - 1 for some m, then the BCH code is called primitive.  

 

 

 
 

 

 
1BHC stands for Bose and Ray-Chaudhuri and Hocquenghem who discovered 
these codes. 

Definition A Reed-Solomon code is a primitive BCH code with n = q - 1. 
 

Properties: 

•  Reed-Solomon codes are self-dual. 



10 Cyclic codes 

CONVOLUTION CODES 

Very often it is important to encode an infinite stream or several streams of data 

– say bits. 

Convolution codes, with simple  encoding and decoding, are quite a simple 

generalization of linear codes and have encodings as cyclic codes. 

 

An (n,k) convolution code (CC) is defined by an k x n generator matrix, 

entries of which are polynomials over F2 

 

For example, 

 

 

is the generator matrix for a (2,1) convolution code CC1 and 

 

 

 

is the generator matrix for a (3,2) convolution code CC2 
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11 Cyclic codes 

ENCODING of FINITE POLYNOMIALS 

An (n,k) convolution code with a k x n generator matrix G can be usd to encode a 

k-tuple of plain-polynomials (polynomial input information) 

 

                                   I=(I0(x), I1(X),…,Ik-1(x)) 

 

to get an n-tuple of crypto-polynomials 

 

                                  C=(C0(x), C1(x),…,Cn-1(x)) 

 

As follows 

 

                                       C= I . G 

 

 



12 Cyclic codes 

EXAMPLES 

EXAMPLE 1 

 

               (x3 + x + 1).G1 = (x3 + x + 1) . (x2 + 1, x2 + x + 1] 

                                       = (x5 + x2 + x  + 1, x5 + x4 + 1) 

 

EXAMPLE 2 
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13 Cyclic codes 

ENCODING of INFINITE INPUT STREAMS 

The way infinite streams are encoded using convolution codes will be 

Illustrated on the code CC1. 

 

An input stream I = (I0, I1, I2,…) is mapped into the output stream 

C= (C00, C10, C01, C11…) defined by 

 

                  C0(x) = C00 + C01x + … = (x2 + 1) I(x) 

and 

                 C1(x) = C10 + C11x + … = (x2 + x + 1) I(x). 

 

The first multiplication can be done by the first shift register from the next  

figure; second multiplication can be performed by the second shift register  

on the next slide and it holds 

                                            C0i = Ii + Ii+2,      C1i = Ii + Ii-1 + Ii-2. 

That is the output streams C0 and C1 are obtained by convolving the input 

stream with polynomials of G1’ 

 

 



14 Cyclic codes 

ENCODING 
The first shift register 

 

1      x        x2       

input 

output 

will multiply the input stream by x2+1 and the second shift register 

 

1      x        x2       

input 

output 

will multiply the input stream by x2+x+1. 



15 Cyclic codes 

ENCODING and DECODING 

 

1       x        x2       I 

C00,C01,C02 

 C10,C11,C12 

Output streams 

The following shift-register will therefore be an encoder for the  

code CC1 

For encoding of convolution codes so called  

 

                    Viterbi algorithm 

 

Is used. 


